
DMC v2 COMM Protocol
The DMC v2 communications protocol is the real-time software interface between Dragonframe
4+ software and our DMC-16/DMC+. Third-party vendors may implement the same protocol on
their devices to achieve real-time control via Dragonframe.

Unlike the v1 protocol, or the Arduino DFMoco protocol, the v2 protocol is binary rather than
ASCII. The protocol also includes message IDs and checksums. The goal is to reduce message
size and provide greater reliability.

Any reference to a motor number is 1-based. Keep this in mind, despite the fact that your code
probably uses zero-based motor numbers.

In this document, the communication is from the perspective of Dragonframe. So a ‘request’ is a
message from Dragonframe to the device.

The receiving buffer on the device must be at least 1048 bytes.

Document Revision History
2024-08-13 - Added real-time camera trigger options
2024-02-13 - Added optional parameters to MSG_RT_SHOOT_FRAME
2022-05-14 - Added real-time looping/ping-ponging.
2022-03-11 - Added notes about sending out position updates.
2022-02-25 - Updated MSG_MOTOR_JOG speed description.
2021-10-12 - Added errors for 'not in position' and pre- and post-roll failures.
2021-04-06 - Added aim safe distance to virtual configuration
2020-10-02 - Added list of possible capabilities to provide in HI message.

Added PROTOCOL VERSION to end of HI message.
Added MSG_RT_UPLOAD_MOVE_TRIGGERS message.
Added MSG_VIRT_AIM_POINT message.

2020-01-25 - Fixed OK response code value
2018-03-20 - Updated protocol to 2.2
2018-03-10 - Changed MSG_VIRT_JOG_ON_LINE from 0x0204 to 0x0206, and changed
parameters
2018-01-28 - Fixed ACK_OK value. Added MSG_RT_END
2018-01-24 - Fixed MOTOR_GET_POSITION frame time description
2017-07-14 - Initial revision for sharing.



Capabilities
A device will advertise different capabilities in response to the MSG_HI message.

Motor Control
If the device advertises that it supports at least one motor, Dragonframe expects it to handle
basic motor control. This includes the following commands:
MSG_MOTOR_STATUS
MSG_MOTOR_MOVE
MSG_MOTOR_STOP
MSG_MOTOR_STOP_ALL
MSG_MOTOR_GET_POSITION
MSG_MOTOR_RESET_POSITION
MSG_MOTOR_JOG
MSG_MOTOR_CONFIGURE
MSG_MOTOR_SET_SPEED
MSG_MOTOR_SET_LIMITS
MSG_MOTOR_HARD_STOP

DMX Lighting
If the device advertises that it supports at least one light, Dragonframe expects it to handle the
DMX lighting command:
MSG_DMX

I/O
MSG_GIO_OUT
MSG_GIO_IN
MSG_GIO_CAM

Real-time Moves
If the device advertises real-time capabilities, Dragonframe expects it to handle the following
commands:
MSG_RT_UPLOAD_MOVE_BEGIN
MSG_RT_UPLOAD_MOVE_AXIS
MSG_RT_UPLOAD_MOVE_DMX (only if the device also support DMX)
MSG_RT_UPLOAD_MOVE_END



MSG_RT_POSITION_FRAME
MSG_RT_RUN_MOVE
MSG_RT_SHOOT_FRAME
MSG_RT_GO
MSG_RT_END
MSG_RT_JOG_ALL
MSG_GO_MOTION2

Virtuals
If the device advertises virtuals, Dragonframe expects it to handle the following commands:
MSG_VIRT_CONFIG
MSG_VIRT_MOVE
MSG_VIRT_STOP
MSG_VIRT_JOG
MSG_VIRT_JOG_ON_LINE
MSG_VIRT_GET_POSITION
MSG_VIRT_AIM_POINT



Message Format
Every message has a Header. Additionally, some messages contain a variable-length Data
section.

All multi-byte values are sent in Little-Endian order.
A WORD is a two-byte value.
A DWORD is a four-byte value.

Section Size Description

Marker 2 BYTES Start of message. Byte sequence: { ‘D’ ‘F’ }

ID DWORD App-defined message ID. Usually a sequence number.

Type WORD Message type.

Length WORD Length of data section, in bytes.

Data Length Depends on message type.

Checksum WORD Checksum bytes. Explained at the end of document.

Message Types
Most messages have different data sections depending on if the message is coming from
Dragonframe or from the device. The data coming from Dragonframe is described in the
Request Data section, the data coming from the device is described in the Response Data
section.

MSG_FLAG_ACK [0x8000]
The device must respond to every message it receives. Some requests have specific responses
that they expect. Some just expect a response with a MSG_FLAG_ACK set and a response
code.

The presence of this flag means that the Data section will contain a response code, rather than
any other expected data.

The response should use the message Type and ID from the received message.



Response Data

Section Size Description

Response Code WORD OK (0x0010) or appropriate Error Code

Response Code Value Description

OK 0x0010 Received, understood, and acted on message

ERR_CHECKSUM 0x0011 Checksum didn’t match

ERR_MOVING 0x0012 Can’t handle this command while the rig is moving

ERR_UNSUPPORTED 0x0013 The message type is not known or supported

ERR_RANGE 0x0014 A parameter was out of range

ERR_GENERAL 0x0015 General Error

ERR_NOT_IN_POSITI
ON

0x0016 Rig is not in position to perform requested operation.
For example, if you attempt to jog all but aren't on a
frame position.

ERR_PREROLL 0x0017 A real-time move preroll failed, usually because preroll
would send motors past limits.

ERR_POSTROLL 0x0018 A real-time move postroll failed, usually because a limit
check failed.

ERR_SOFT_UP 0x0020 Software upper limit hit

ERR_SOFT_LOW 0x0021 Software lower limit hit

ERR_HARD_UP 0x0022 Hardware upper limit hit

ERR_HARD_LOW 0x0023 Hardware lower limit hit



MSG_HI [0x0001]
Request basic information about the device. Dragonframe always starts with this request.
Also, the device should issue a MSG_HI whenever it starts up. This is helpful to Dragonframe to
determine if the device had a random reset. (Some devices can maintain their USB connection
while resetting the controller.)

Request Data
None

Response Data

Section Size Description

NAME 32 BYTES Device name, up to 32 bytes, UTF-8 encoded. Fill with
\0 characters if less than 32 bytes

FW MAJOR BYTE FW major number

FW MINOR BYTE FW minor number

FW REV BYTE FW revision number

MOTOR COUNT BYTE 0-32: Number of motors the device supports

DMX COUNT WORD 0-512: Number of DMX channels the device supports

GIO OUT COUNT BYTE 0-32: Number of general IO output triggers (relay, logic
out)

GIO INPUT
COUNT

BYTE 0-32: Number of input triggers

HW LIMIT
COUNT

BYTE 0-32: How many hardware limit set inputs the device
has

UPLOAD FRAME
COUNT

DWORD How many frames of position/dmx data can the device
hold

CAPABILITIES DWORD Other capabilities the device can advertise

PROTOCOL
VERSION

WORD 2



Capabilities
Each bit in the capabilities parameter represents functionality the device supports.

Value Capability

0x0001 Real-time moves (upload move / jog all / play)

0x0002 Go-motion shoot frame

0x0004 Virtual mode Boom/Swing/Track

0x0008 Virtual mode Swing/Pan

0x0010 Virtual mode Y/Swing/Track

0x0020 Virtual mode X/Y/Z

0x0040 Aim point

0x0080 Go-motion shoot frame version #2

0x0100 Couple motors

0x0200 Real-time looping or ping-pong playback

0x0400 Real-time camera trigger (video or stills)

MSG_DMX [0x0020]
Set DMX light values. The request specifies the initial channel to change, and then one or more
light values.
If RAMP is set to 1, the device should ramp the light value of each channel up or down to reach
the target channel, rather than switching to it immediately.

Request Data

Section Size Description

RAMP BYTE 1=ramp, 0=immediate

START
CHANNEL

WORD First channel of lighting values, 1-512

LIGHT VALUE BYTE LIGHT VALUE for START CHANNEL

LIGHT VALUE BYTE LIGHT VALUE for START CHANNEL + 1

LIGHT VALUE BYTE LIGHT VALUE for START CHANNEL + 2



LIGHT VALUE BYTE etc

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_GIO_OUT [0x0021]
Set the state for general I/O output triggers.

Request Data

Section Size Description

TRIGGERS DWORD General I/O output trigger values

Response Data
None (FLAG_ACK + Response Code)

MSG_GIO_IN [0x0022]
Request the state for general I/O input triggers. Dragonframe may request the input state with
this message. The device should also send this message, unsolicited, any time the inputs
change. (Of course, the device should use some hysteresis to ensure the inputs don’t change
frantically.)

Request Data
None (MSG_FLAG_ACK + Response Code)

Response Data

Section Size Description

TRIGGERS DWORD General I/O input trigger values

MSG_GIO_CAM [0x0023]
Test the camera outputs.

Request Data

Section Size Description



TRIGGERS DWORD Camera flags

GIO_CAM_SHUTTER [0x0001]
GIO_CAM_METER [0x0002]

Response Data
None (FLAG_ACK + Response Code)

MSG_MOTOR_STATUS [0x0030]
Request the motor (and dmx) status. This is only a status of whether something is
moving/adjusting.

Request Data
None

Response Data

Section Size Description

MOTOR STATUS DWORD Bit 1=motor moving, 0=not moving

DMX STATUS BYTE 1=DMX adjusting, 0=Not adjusting

MSG_MOTOR_MOVE [0x0031]
Instruct the device to move a motor to a new position.

Request Data

Section Size Description

MOTOR BYTE Motor number, 1-MOTOR_COUNT

POSITION DWORD Signed int32 - the motor step position



Response Data

Section Size Description

MOTOR STATUS BYTE 1=motor moving, 0=not moving

MSG_MOTOR_STOP [0x0032]
Instruct the device to stop a motor.

Request Data

Section Size Description

MOTOR BYTE Motor number, 1-MOTOR_COUNT

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_MOTOR_STOP_ALL [0x0033]
Instruct the device to stop all motors. The device should decelerate. If the device gets a second
STOP_ALL soon after a first, it should HARD STOP. Meaning it should decelerate faster than
normal. (If a controller may move large/heavy equipment, it should always decelerate rather
than simply stop sending signals.)

Request Data

Section Size Description

Flags DWORD (Optional) 0x01 means silent (do not flash any warnings
on device)

Response Data
None (MSG_FLAG_ACK + Response Code)





MSG_MOTOR_GET_POSITION [0x0034]
Request the motor positions and move ‘time’.
The device should send these out, about every 0.10 seconds, if any of the motors are moving,
to keep Dragonframe informed of the positions.

Request Data
NONE

Response Data

Section Size Description

MOVE TIME DWORD Current position in move (if playing back), in
thousandths of a frame. (Frame 2 is ‘2000’, e.g.)

MOTOR-1 POS DWORD Motor 1 position

MOTOR-2 POS DWORD Motor 2 position

... ... ...

MOTOR-N POS DWORD Final motor position

MSG_MOTOR_RESET_POSITION [0x0035]
Instruct the device to reset a motor position to a new value. This does not move the motor.
After changing the internal position and responding to this message, the device should send a
MSG_MOTOR_GET_POSITION message to confirm the new position.

Request Data

Section Size Description

MOTOR BYTE Motor number, 1-MOTOR_COUNT

POSITION DWORD New position

Response Data
None (MSG_FLAG_ACK + Response Code)



MSG_MOTOR_JOG [0x0036]
Instruct the device to jog/inch a motor.
A speed of 1 means the device should move very slowly, for precise adjustments.
A speed of 10,000 means the device should jog using the max velocity and acceleration.
A value in between 1 and 10,000 should provide an appropriate speed between 1% and 100%
of the jog speed.

Request Data

Section Size Description

MOTOR BYTE Motor number, 1-MOTOR_COUNT

SPEED WORD 1=inching, 10000=jog at max velocity

DESTINATION DWORD Step position of target position (limited to min/max of
signed int32)

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_MOTOR_CONFIGURE [0x0037]
Configure the motor.

Request Data

Section Size Description

MOTOR BYTE Motor number, 1-MOTOR_COUNT

FLAGS BYTE 0x01 - motor enabled. 0x02 - blur enabled

Response Data
None (MSG_FLAG_ACK + Response Code)



MSG_MOTOR_SET_SPEED [0x0038]
Set the motor speed and acceleration.

Request Data

Section Size Description

MOTOR BYTE Motor number, 1-MOTOR_COUNT

MAX VELOCITY DWORD The maximum steps per second the motor can go

MAX ACCEL DWORD The maximum acceleration, in steps/second/second

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_MOTOR_SET_LIMITS [0x0039]
Set the motor software and hardware limits.

Request Data

Section Size Description

MOTOR BYTE Motor number, 1-MOTOR_COUNT

LOWER ENABLE BYTE 0x01 enabled, 0x00 not

LOWER LIMIT DWORD The lower software step limit

UPPER ENABLE BYTE 0x01 enabled, 0x00 not

UPPER LIMIT DWORD The upper software step limit

HW SET BYTE Hardware limit set, or 0x00 if none set
Flag 0x80 swaps high/low

Response Data
None (MSG_FLAG_ACK + Response Code)



MSG_MOTOR_HARD_STOP [0x003A]
The device can send this when a limit has been hit, or if the device’s “emergency stop” button
has been pressed.

Request Data
None

Response Data

Section Size Description

REASON BYTE 0=E-Stop/General, 1=Upper Limit, 2=Lower Limit,
100=Engine Exception

MOTOR BYTE Motor number, 1-MOTOR_COUNT (only present if
REASON is 1 or 2)

MSG_RT_UPLOAD_MOVE_BEGIN [0x0100]
Initial message for uploading move data. Any previously loaded move will be cleared.

Request Data

Section Size Description

START FRAME DWORD The starting frame of the move data

END FRAME DWORD The ending frame of the move data

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_RT_UPLOAD_MOVE_AXIS [0x0101]
Send a section of axis frame data.

Request Data

Section Size Description

MOTOR BYTE The motor



START INDEX DWORD The starting index of the move data (start at zero).
If the high bit is set (0x80000000), then this is the _last_
set of POSITION data for this channel. That means the
device must repeat the final value until the end of the
uploaded move frame range (specified with
UPLOAD_MOVE_BEGIN)

POSITION DWORD Position

... ... ...

POSITION DWORD Final position of this section of move data

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_RT_UPLOAD_MOVE_DMX [0x0102]
Send a section of DMX frame data.

Request Data

Section Size Description

CHANNEL WORD The DMX channel

START INDEX DWORD The starting index of the move data (start at zero).
If the high bit is set (0x80000000), then this is the _last_
set of DMX data for this channel. That means the device
must repeat the final value until the end of the uploaded
move frame range (specified with
UPLOAD_MOVE_BEGIN)

LEVEL BYTE DMX light level

... ... ...

LEVEL BYTE Final level of this section of DMX data

Response Data
None (MSG_FLAG_ACK + Response Code)



MSG_RT_UPLOAD_MOVE_TRIGGERS [0x0104]
Introduced in Protocol: 2
Send a section of trigger data.
Only sent if the DMX program has triggers.
Only sends frame/value pairs where one or more triggers is on.

Request Data

Section Size Description

MASK DWORD The trigger mask. Should be the same every time.

Repeat the following frame/value pair as long as
needed

FRAME DWORD Frame index (frame - start)

VALUES DWORD Trigger values

FRAME DWORD Frame index (frame - start)

VALUES DWORD Trigger values

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_RT_UPLOAD_MOVE_END [0x0103]
Final message for uploading move data.

Request Data
None

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_RT_POSITION_FRAME [0x0110]
Instructs the device to send all motors (and DMX if applicable) to the uploaded frame position.



Request Data

Section Size Description

FRAME DWORD The frame to send all motors to

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_RT_RUN_MOVE [0x0111]
Prepares the device to run a section of the move live.
The rig must move into a pre-roll position that it calculates, so that it can accelerate into full
speed after “pre-roll time”.
Once the rig moves into pre-roll position, it must wait for a MSG_RT_GO to begin the move.

Request Data

Section Size Description

FPS DWORD Speed in FPS * 1000

START FRAME DWORD Start frame to play

END FRAME DWORD End frame to play

PRE-ROLL TIME DWORD Pre-roll time, in ms

POST-ROLL TIME DWORD Post-roll time, in ms

SYNC DMX BYTE 1=Play back upload DMX, 0=don’t play DMX

BLOOP LOCATION DWORD GIO Outputs for “bloop” signal

BLOOP DMX
CHANNEL

WORD 0=None, 1-512 = a channel for the BLOOP

BLOOP TIME WORD Bloop time (approx) in ms

FLAGS WORD Only set if capability 0x0200 (real-time looping) or
0x0400 (real-time camera) are set.
0x01 is ping-pong
0x02 is loop



0x10 is camera trigger at start/stop of move (video)
0x20 is camera trigger for every frame (stills)

CAMERA OPEN
ANGLE

WORD Only used if camera trigger for every frame, 0-360
degrees

CAMERA CLOSE
ANGLE

WORD Only used if camera trigger for every frame, 0-360
degrees

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_RT_SHOOT_FRAME [0x0112]
Set up a blur-motion frame capture

Request Data

Section Size Description

FRAME DWORD A frame in the uploaded move

DIRECTION BYTE 1=forward, 0=backward

EXPOSURE TIME DWORD Exposure Time in ms

BLUR PERCENT WORD Percentage * 10 (500 = 50%)

MOTOR #1 BYTE Motor number

MOTOR #1 POS A DWORD Motor position at angle 0

MOTOR #1 POS B DWORD Motor position at angle 360

MOTOR #2 BYTE Motor number

MOTOR #2 POS A DWORD Motor position at angle 0

MOTOR #2 POS B DWORD Motor position at angle 360

... Add motors to blur, as needed

Response Data
None (MSG_FLAG_ACK + Response Code)



MSG_RT_SHOOT_FRAME2 [0x0115]
Set up a blur-motion frame capture (alternate version)
The sets of motor numbers and positions are optional. Each motor provided will be part of the
blur.

Request Data

Section Size Description

FRAME DWORD A frame in the uploaded move

EXPOSURE TIME DWORD Exposure Time in ms

OPEN ANGLE WORD Open shutter time, expressed as angle

CLOSE ANGLE WORD Close shutter time, expressed as angle

MOTOR #1 BYTE Motor number

MOTOR #1 POS A DWORD Motor position at angle 0

MOTOR #1 POS B DWORD Motor position at angle 360

MOTOR #2 BYTE Motor number

MOTOR #2 POS A DWORD Motor position at angle 0

MOTOR #2 POS B DWORD Motor position at angle 360

... Add motors to blur, as needed

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_RT_GO [0x0113]
After a MSG_RT_RUN_MOVE or MSG_RT_SHOOT_FRAME the device may move the motors
into position. When the device has stopped moving, a MSG_RT_GO command will perform the
run or shoot of the frame.

If the device is running a live move (configured via MSG_RT_RUN_MOVE), it must send a
MSG_MOTOR_GET_POSITION each time it reaches a new frame in the move. (If it is slightly
after, that is ok.)



Request Data
None

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_RT_END [0x0114]
After a MSG_RT_RUN_MOVE or MSG_RT_SHOOT_FRAME has finished shooting, the device
sends MSG_RT_END to notify Dragonframe that the process is over.

Request Data
None

Response Data
Note

MSG_RT_JOG_ALL [0x0120]
Jog all motors towards the destination frame.
The rig must already be on a frame position that is uploaded to the device.

Request Data

Section Size Description

FPS DWORD Speed in FPS * 1000

DESTINATION DWORD A frame number in the upload move

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_RT_STOP_LOOP [0x0116]
If the device supports 'real-time looping' capability, it must support this command.
The currently running loop/ping-pong must stop after it reaches the next end point.



Request Data
None

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_VIRT_CONFIG [0x0200]
Configure virtuals.

Request Data

Section Size Description

TYPE BYTE 0=none
1=boom-swing-track
2=swing-pan,
3=y-swing-track
4=x-y-z

depends depends Depends on type

TYPE = 0 (None)
No further request data.

TYPE = 1 (Boom-Swing-Track)

Section Size Description

BOOM motor DWORD BOOM motor (up/down)

BOOM spu DWORD BOOM steps per unit

BOOM pos DWORD BOOM position (in units) * 100000

SWING motor DWORD SWING motor (up/down)

SWING spu DWORD SWING steps per unit

SWING pos DWORD SWING position (in units) * 100000

TRACK motor DWORD TRACK motor (up/down)



TRACK spu DWORD TRACK steps per unit

TRACK pos DWORD TRACK position (in units) * 100000

PAN motor DWORD PAN motor (up/down)

PAN spu DWORD PAN steps per unit

PAN pos DWORD PAN position (in units) * 100000

TILT motor DWORD TILT motor (up/down)

TILT spu DWORD TILT steps per unit

TILT pos DWORD TILT position (in units) * 100000

ROLL motor DWORD ROLL motor (up/down)

ROLL spu DWORD ROLL steps per unit

ROLL pos DWORD ROLL position (in units) * 100000

BOOM LENGTH DWORD Boom length * 1000

BOOM EXT DWORD Boom extension length * 1000

NODAL OFF X DWORD Nodal offset for x * 1000

NODAL OFF Y DWORD Nodal offset for y * 1000

NODAL OFF Z DWORD Nodal offset for z * 1000

Boom
Compensation
Table

DWORD * 121 Optional Boom Compensation Data.
Position of Boom arm at -60, -59, … 0, 1, 2, … 59, 60
degrees

SAFE DISTANCE DWORD Safe distance * 1000 (optional)

TYPE = 2 (Swing-Pan)

Section Size Description

SWING motor DWORD SWING motor (up/down)

SWING spu DWORD SWING steps per unit

PAN motor DWORD PAN motor (up/down)



PAN spu DWORD PAN steps per unit

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_VIRT_MOVE [0x0201]
Send the virtual motor to a new position.

Request Data

Section Size Description

VIRTUAL
MOTOR

BYTE Virtual motor number

POSITION DWORD Target position * 100000

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_VIRT_STOP [0x0202]
Stop the virtual motor.

Request Data

Section Size Description

VIRTUAL
MOTOR

BYTE Virtual motor number

Response Data
None (MSG_FLAG_ACK + Response Code)



MSG_VIRT_JOG [0x0203]
Instruct the device to jog/inch a virtual motor.
A speed of 1 means the device should move very slowly, for precise adjustments.
A speed of 10,000 means the device should jog using the max velocity and acceleration.
For now, those are the only speeds sent.
In the future, we may send intermediate values to signify a target % of the max velocity.

Request Data

Section Size Description

MOTOR BYTE Motor number, 1-MOTOR_COUNT

SPEED WORD 1=inching, 10000=jog at max velocity

DESTINATION DWORD Step position of target position (limited to min/max of
signed int32)

Response Data
None (MSG_FLAG_ACK + Response Code)

MSG_VIRT_JOG_ON_LINE [0x0206]
Instruct the device to jog along the direction of the camera.
Speed is -10000->10000, with 1 being the slowest and 10000 being the fastest.

Request Data

Section Size Description

AXIS BYTE 0=X, 1=Y, 2=Z (camera line), 3=PAN, 4=TILT

SPEED WORD 1=inching, 10000=jog at max velocity

Response Data
None (MSG_FLAG_ACK + Response Code)



MSG_VIRT_GET_POSITION [0x0205]
Request the virtual motor positions.

Request Data
NONE

Response Data

Section Size Description

vTrack POS DWORD Virtual track position * 100000

vEW POS DWORD Virtual east/west position * 100000

vNS POS DWORD Virtual north/south position * 100000

vPan POS DWORD Virtual pan position * 100000

vTilt POS DWORD Virtual tilt position * 100000

vRoll POS DWORD Virtual roll position * 100000

Aim pt enabled BYTE This and below are only if device supports aim point

aim-x DWORD X * 1000

aim-y DWORD Y * 1000

aim-z DWORD Z * 1000

MSG_VIRT_AIM_POINT [0x0207]
Introduced in Protocol: 2
Configure aim point.

Request Data

Section Size Description

ENABLE BYTE Enable/disable aim point

AIM-X DWORD Aim x position * 1000

AIM-Y DWORD Aim y position * 1000



AIM-Z DWORD Aim z position * 1000

Response Data
The response contains the same data. The message can also be sent from the DMC at any
point to confirm the aim point configuration.

Section Size Description

ENABLE BYTE Enable/disable aim point

AIM DWORD Aim x position * 1000

AIM-Y DWORD Aim y position * 1000

AIM-Z DWORD Aim z position * 1000



Computing and Validating the Checksum
The protocol uses a Fletcher-16 checksum with K=8 and modulus of 255.
https://en.wikipedia.org/wiki/Fletcher%27s_checksum#Fletcher-16
Further, outgoing messages add check bytes, so that the final computed checksum will be zero
on the receiver end.

Example C code to compute checksum:

uint16_t computeChecksum(uint8_t * data, int bytes)
{

alt_u16 sum1 = 0, sum2 = 0;
size_t tlen;

while (bytes)
{

tlen = ((bytes >= 20) ? 20 : bytes);
bytes -= tlen;
do
{

sum2 += sum1 += *data++;
tlen--;

} while (tlen);
sum1 %= 0xff;
sum2 %= 0xff;

}
return (sum2 << 8) | sum1;

}

For received messages, this checksum should be zero. If it is not the device should respond
with response code ACK_ERR_CHECKSUM.

For outgoing messages, the checksum should be computed with the above function, and then
the check bytes should be calculated as follows:

// assuming our outbound message is stored in 'messageBuffer'
// uint8_t * messageBuffer;
// int messageLength;

alt_u16 csum = computeChecksum(messageBuffer, messageLength);
alt_u8 c0,c1,f0,f1;
f0 = csum & 0xff;
f1 = (csum >> 8) & 0xff;
c0 = 0xff - ((f0 + f1) % 0xff);

https://en.wikipedia.org/wiki/Fletcher%27s_checksum#Fletcher-16


c1 = 0xff - ((f0 + c0) % 0xff);

// add check bytes to end of message
messageBuffer[messageLength++] = c0;
messageBuffer[messageLength++] = c1;


